nqs_sdk.bindings.distributions module

class nqs_sdk.bindings.distributions.Distribution(**data)[source]

Bases: BaseModel, ABC

name: str
dtype: str
abstractmethod sample()[source]
Return type:

Any

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class nqs_sdk.bindings.distributions.UniformDistribution(**data)[source]

Bases: Distribution

name: str
min: float
max: float
sample()[source]
Return type:

Union[int, float]

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class nqs_sdk.bindings.distributions.PoissonDistribution(**data)[source]

Bases: Distribution

name: str
lam: float
sample()[source]
Return type:

int

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class nqs_sdk.bindings.distributions.NormalDistribution(**data)[source]

Bases: Distribution

name: str
mean: float
std: float
sample()[source]
Return type:

float

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class nqs_sdk.bindings.distributions.ExponentialDistribution(**data)[source]

Bases: Distribution

name: str
lamb: float
sample()[source]
Return type:

float

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class nqs_sdk.bindings.distributions.BinomialDistribution(**data)[source]

Bases: Distribution

name: str
n: int
p: float
sample()[source]
Return type:

int

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].